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Mathematical software packages such as Excel®, MA-
PLE™, MATHCAD®, MATLAB®, Mathematica®, 
and POLYMATH™ are currently used routinely 

for numerical problem solving in engineering education.[1, 2] 

From the numerical solution perspective, it is convenient to 
characterize the various problems as Single Model-Single 
Algorithm (SMSA) problems and complex problems with 
some combination of Multiple Models and Multiple Algo-
rithms (MMMA). A typical example of an SMSA problem 
is the solution of a system of ordinary differential equations 
coupled with explicit algebraic equations where one numeri-
cal integration algorithm (such as the 4th order Runge-Kutta) 
can be used to solve the problem (e.g., steady-state operation 
of a tubular reactor). 

The application of mathematical software packages for solv-
ing SMSA problems has essentially replaced all other solution 
techniques, as can be seen in many recent textbooks (see, for 
example, Fogler[3]). For complex and/or multi-scale problems, 
however, the solution process is often more involved. 

The types of models included in the “complex” category are: 
1. 	 Multiple Model-Single Algorithm (MMSA) Problem. 

A typical example is the cyclic operation of a semi-
batch bioreactor.[4] The three modes of operation of the 
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bioreactor (initialization, processing, and harvesting) 
are represented by different models comprising ordinary 
differential equations and explicit algebraic equations. 
All models can be solved by one numerical integration 
algorithm (such as the 4th order Runge-Kutta). 

2. 	 Single Model-Multiple Algorithm (SMMA) Problem. 
Typical examples are the solution of two-point boundary 
value problems, where the integration of the model is 
carried out in the inside loop and a nonlinear equation 
solver algorithm adjusts the boundary values in an outer 
loop, or the solution of differential-algebraic systems of 
equations where the same algorithms are used but in an 
opposite hierarchy. 

3. 	 Multiple Model-Multiple Algorithm (MMMA) Problem. 
A typical example is the modeling of an exothermic 
batch reactor, where the two stages of operation (heat-
ing and cooling) require different models and different 
integration algorithms (stiff and non-stiff).  

The solution of such complex problems can be rather 
cumbersome and time consuming even if mathematical soft-
ware packages are used, as manual transfer of data from one 
model/problem to another and consecutive manual reruns 
are often required. Combining the 
use of several software packages 
of various levels of complexity, 
flexibility and user friendliness, 
however, can considerably reduce 
the time and effort required for solv-
ing complex models. 

Following this premise, the mod-
els representing the various stages 
of the problems can be coded and 
tested using a software package 
(for example, POLYMATH[5]) that 
requires very little technical cod-
ing effort. After testing each of 
the modules separately, they are 
combined into one program us-
ing a programming language, or 
a mathematical software package 
that supports programming (say, 
MATLAB[6]). To minimize the prob-
ability of introducing errors into the 
model equations, the POLYMATH 
input for the various modules can 
be automatically converted within 
POLYMATH to MATLAB code. 
This allows MATLAB functions to 
be created that enable the consecu-
tive and repetitive calls to the vari-
ous models, apply the appropriate 
solution algorithms, and assign the 
hierarchy of the computations dur-
ing the solution. 

A homework assignment that demonstrates this suggested 
approach is the following problem of biokinetic modeling of 
a chemostat with imperfect mixing. This problem is a modi-
fied version of a problem presented by Cutlip and Shacham.[7] 
The solution algorithm presented for this problem includes 
the use of various computing tools in the different stages 
of the problem solution (the solution of an SMSA problem, 
parametric runs of an SMSA problem, and the solution of an 
SMMA problem). 

Problem Background 
Biokinetic Modeling of Imperfect Mixing 
in a Chemostat

A chemostat is usually considered to be a completely 
mixed reactor; however, this is not always the case. Consider 
the situation where the chemostat may be considered to be 
modeled as a reactor with a completely-mixed volume V1 
(dm3) that interacts with another completely-mixed volume 
V2 (dm3) as shown in Figure 1. Volume V2 with an exchange 
flow rate F2 (dm3/hr) may be considered to model the poorly 
mixed regions within a production fermenter. The microbial 

Table 1
POLYMATH Model for the Chemostat with Imperfect Mixing 

No. Equation # Comment 

1 f(S1) = F1*S0+F2*S2-(1/Yxs)*(mum*S1/(Ks+S1))*X1*V1-F1*S1-F2*S1 # Substrate 
balance on volume V1 

2 f(S2) = F2*S1-(1/Yxs)*(mum*S2/(Ks+S2))*X2*V2-F2*S2 # Substrate balance on volume 
V2 

3 f(X1) = F2*X2+(mum*S1/(Ks+S1)-kd)*X1*V1-F1*X1-F2*X1 # Cell balance on volume 
V1 

4 f(X2) = F2*X1+(mum*S2/(Ks+S2)-kd)*X2*V2-F2*X2 # Cell balance on volume V2 

5 F1 = 0.17 # Feed flow rate to volume V1 (dm^3/hr) 

6 F2 = 0.2*F1 # Feed flow rate to volume V2 (dm^3/hr) 

7 P1 = Yps*(S0-S1) # Production (g/dm^3) 

8 D = F1/(V1+V2) # Dilution rate (1/hr) 

9 S0 = 0.6 # Feed substrate concentration (g/dm^3) 

10 kd = 0.002 

11 Yxs = 0.4 # Yield coefficient (g cells/g substrate) 

12 Yps = 0.2 # Yield coefficient (g product/g substrate) 

13 Ks = 0.2 # Saturation constant (g substrate/dm^3) 

14 mum = 0.2 # Maximal specific growth rate (1/hr) 

15 V1 = 1.7 # Volume V1 (dm^3) 

16 V2 = 0.3 # Volume V2 (dm^3) 

17 PR_DX1 = D*X1 # Cell production rate (g/hr) 

18 PR_DP1 = D*P1 # Product production rate (g/hr) 

19 S1(0) = 0 # Substrate concentration in volume V1 (g/dm^3) 

20 S2(0) = 0 # Substrate concentration in volume V2 (g/dm^3) 

21 X1(0) = 0.025 # Cell concentration in volume V1 (g/dm^3) 

22 X2(0) = 0.025 # Cell concentration in volume V2 (g/dm^3) 
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system to be modeled involves substrate S (g/dm3) going to 
product P (g/dm3) only under the action of cells X (g/dm3). 
The following separate balances on the substrate, cells, and 
product in each reactor volume use Monod kinetics and a cell 
death rate constant given by kd (hr-1). 
Steady-State Substrate Balance on Volume V1 
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where F is flow rate (dm3/hr), YX/S is yield coefficient (g cells/g 
substrate), μm is the maximal specific growth rate (hr-1), and 
KS is the saturation constant (g substrate/dm3). The indexes 
0, 1, and 2 are used as shown in Figure 1. 
Steady-State Substrate Balance on Volume V2 
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Steady-State Cell Balance on Volume V1 
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Steady-State Cell Balance on Volume V2 
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Overall Steady-State Material Balance for the Product
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where YP/S is the yield coefficient (g product/g substrate). 

Problem Statement 
Microbial growth has been studied in a continuous culture, 

and the following parameters were obtained: μm = 0.2 h-1, KS 
= 0.2 g/dm3, kd = 0.002 hr-1, YX/S = 0.4 g cells/g substrate, and 
YP/S = 0.2 g product/g substrate. Tracer studies have indicated 
that the incomplete mixing can be described by a well-mixed 

Figure 1. 
Chemostat 
model.

Table 2
Chemostat Results From POLYMATH For F1 = 0.17 dm3/hr 

 

Variable Value f(x) Initial Guess 

S1 (g/dm3) 0.1821 4.20E-11 0 

S2 (g/dm3) 0.03589 3.91E-11 0 

X1 (g/dm3) 0.1631 -1.68E-11 0.025 

X2 (g/dm3) 0.2178 -1.56E-11 0.025 

D (1/hr) 0.085

F1 (dm3/hr) 0.17

F2 (dm3/hr) 0.034

PR_DP1 (g/hr) 0.00711

PR_DX1 (g/hr) 0.01387 

volume V1 = 1.7 dm3 and a volume of V2 = 0.3 dm3 with an 
exchange flow rate F2. The flow rate relationship with the 
overall flow rate to chemostat, F1, is given by F2 = 0.2 F1 in 
dm3/hr. Chemostat operation is such that F1 = 0.17 dm3/hr, 
X0 = 0 and S0 = 0.6 g/dm3, and the endogenous metabolism 
can be neglected. 

(a) 	 Create a single graph of S1, X1, and P1 vs. the dilution 
rate defined by D = F1/V1. 

(b) 	 Plot the cell production rate, the product DX1, and the 
product production rate, the product of DP1, as func-
tions of the dilution rate between 0.05 and 0.130 hr -1. 

(c) 	 Estimate the dilution rate that will maximize the produc-
tion rate, DX1, for the cells and the dilution rate that will 
maximize the production rate, DP1, for the product. 

Problem Solution 
Modeling the Chemostat and Solving the Single 
Model-Single Algorithm (SMSA) Problem 

The mathematical model of the chemostat can be formulated 
as a system of nonlinear algebraic equations (NLEs) that can 
be solved by a single algorithm. This simple, uncomplicated 
model can be easily solved with POLYMATH version 6.1 to 
obtain the solution of this SMSA problem. 

The complete POLYMATH code for the chemostat model is 
given in Table 1. The model includes four implicit nonlinear 
algebraic equations that are obtained from the material bal-
ances. The POLYMATH model (including the “comments,” 
which start with the # sign) provides complete documenta-
tion of the equations, the values of the constants, and the 
initial estimates used for the four unknowns: S1, S2, X1, and 
X2. Statements 1 through 4 present the implicit equations 
for obtaining the substrate concentration in the well-mixed 
volumes (S1, S2, respectively), and the cell concentration in 
the well-mixed volumes (X1, X2, respectively). Explicit vari-
ables and constants are described in statements 5-18. Initial 
estimates for the unknowns in the nonlinear equations are 
provided in lines 19 to 22. 

The results for the case where F1 = 0.17 dm3/hr and the 
initial estimates S1,0 = S2,0 = 0, X1,0 = 0.025, and X2,0 = 0.025 
are given in Table 2. For this case with the dilution rate D = 

Error Correction: The 3rd term in Equation (1) and the 2ed term in Equation (2) should be negative.
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0.085 hr-1, the cell production rate DX1 = 0.0139 
g/hr and the product production rate DP1 = 
0.00711 g/hr. Lower initial values of X1,0 = X2,0 
that are less than 0.0247 g/dm3 result in negli-
gible steady-state reaction corresponding to cell 
washout operation. Thus the simulated chemostat 
has a critical value of initial cell concentration 
that leads to a sustained steady-state biochemical 
reaction. The production rates associated with the 
operation where washout of the cells is avoided 
will be studied in more detail. 

Parametric Studies on the Chemostat 

Parametric runs, requested in the second part 
of the assignment, can be carried out with POLY-
MATH by manually changing the parameter 
values. This approach, however, is inefficient 
and cumbersome—particularly for problems 
where there are many parameters and a wide 
range of parameter values to be considered. In 
such cases, programming is desirable for repeti-
tive solution of the problem with the various 
parameter values. One option is to carry out the 
parametric runs efficiently using MATLAB. The 
MATLAB function representing the operation 
of the chemostat can be automatically and ef-
ficiently generated by POLYMATH (Table 3). 
Note that MATLAB requires input of the vari-
able values into the function in a single array (x, 
in this case), and return of the function values in 
a single array (fx, lines 20-23 in Table 3). The 
variable values are put back into variables with 
the same names as used in the POLYMATH 
model (lines 2-5) to make the MATLAB code 
more meaningful. POLYMATH orders the 
basic model equations sequentially as required 
by MATLAB and converts any needed intrinsic 
functions and logical expressions. 

Convenient parametric runs can be made for 
various values of the feed flow rate (F1), and 
this variable can be added as an input parameter 
to the MNLEfun function (Table 3). A main 
program can be prepared that changes the value 
of F1, solves the system of nonlinear equations, 
collects the pertinent data, and plots the results of 
the parametric runs. Part of this main program is 
shown in Table 4. The value of F1 is changed start-
ing at F1 = 0.1 up to F1 = 0.25 with steps of 0.01. 
The MATLAB library function fsolve is used to 
solve the system of algebraic equations as shown 
in line 7 of Table 4. The variable values needed 
for preparing the various plots are calculated and 
stored in lines 8 through 10. 

Table 4
Part of the MATLAB “Main Program” for Parametric Studies 

with the Chemostat 
No. Equation % Comment 

1 options = optimset(‘Diagnostics’,[‘off’],’TolFun’,[1e-9],’TolX’,[1e-9]); 

2 Yps = 0.2; S0 = 0.6; kd = 0.002; Yxs = 0.4; Ks = 0.2; 

3 mum = 0.2; V1 = 1.7; V2 = 0.3; 

4 F1=0.1; %Initial feed flow rate to volume V1 (dm^3/hr) 

5 xguess = [0 0 0.025 0.25]; % initial guess vector 

6 for k=1:16 

7   xsolv=fsolve(@MNLEfun,xguess,options,F1); 

8   S1(k)=xsolv(1); S2(k)=xsolv(2); X1(k)=xsolv(3); X2(k)=xsolv(4); 

9   F1list(k)=F1; D(k) = F1 / (V1 + V2); P1(k)= Yps * (S0 - S1(k)); 

10   PR_DX1(k) = D(k) * X1(k); PR_DP1(k) = D(k) * P1(k); 

11   F1=F1+0.01; %Incrementing feed flow rate to volume V1 (dm^3/hr) 

12 end

Table 3
MATLAB Function (Model) for the Chemostat with Imperfect Mixing 

No. Equation % Comment 

1 function fx = MNLEfun(x, F1); 

2 S1 = x(1); %Substrate concentration in volume V1 (g/dm^3) 

3 S2 = x(2); %Substrate concentration in volume V2 (g/dm^3) 

4 X1 = x(3); %Cell concentration in volume V1 (g/dm^3) 

5 X2 = x(4); %Cell concentration in volume V2 (g/dm^3) 

6 F1 = 0.17; %Feed flow rate to volume V1 (dm^3/hr) 

7 F2 = 0.2 * F1; %Feed flow rate to volume V2 (dm^3/hr) 

8 Yps = 0.2; %Yield coefficient (g product/g substrate)  

9 V2 = 0.3; %Volume V2 (dm^3)  

10 S0 = 0.6; %Feed substrate concentration (g/dm^3) 

11 kd = 0.002; %Cell death rate (1/hr) 

12 Yxs = 0.4; %Yield coefficient (g cells/g substrate) 

13 P1 = Yps * (S0 - S1); %Production (g/dm^3) 

14 Ks = 0.2; %Saturation constant (g substrate/dm^3)  

15 mum = 0.2; %Maximal specific growth rate (1/hr) 

16 V1 = 1.7; %Volume V1 (dm^3) 

17 D = F1 / (V1 + V2); %Dilution rate (1/hr) 

18 PR_DX1 = D * X1; %Cell production rate (g/hr) 

19 PR_DP1 = D * P1; %Product production rate (g/hr) 

20 fx(1,1) = F1 * S0 + F2 * S2 - (1 / Yxs * mum * S1 / (Ks + S1) * X1 * 
V1) - (F1 * S1) - (F2 * S1); %Substrate balance on volume V1 

21 fx(2,1) = F2 * S1 - (1 / Yxs * mum * S2 / (Ks + S2) * X2 * V2) - (F2 * 
S2); %Substrate balance on volume V2 

22 fx(3,1) = F2 * X2 + (mum * S1 / (Ks + S1) - kd) * X1 * V1 - (F1 * X1) 
- (F2 * X1); %Cell balance on volume V1  

23 fx(4,1) = F2 * X1 + (mum * S2 / (Ks + S2) - kd) * X2 * V2 - (F2 * X2); 
%Cell balance on volume V2 
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Figure 2. Plot of S1, X1, and P1 as functions of dilution rate.

Table 5
POLYMATH Model of the Chemostat Exported to Excel with Display Formulas Option.

Excel[8] can also be used for carrying out the para-
metric runs efficiently. The model can be automatically 
exported from POLYMATH to Excel with a single key 
press. Part of the Excel worksheet as generated by 
POLYMATH is shown in Table 5, where the variable 
cell calculations are indicated. The variable names 
are translated to cell addresses, a new equation that 
calculates the sum of squares of the function values 
is added, and the equations are rearranged in a form 
that is appropriate for solving the equation using the 
solver add-in available within Excel. The complete 
worksheet with the solution obtained using solver is 
shown in Table 6 (next page). The numerical results 
are identical to those obtained by POLYMATH. The 
variable names in column B, the POLYMATH equa-
tions in column D, and the variable descriptions in 
column E provide complete documentation for the 
Excel formulas in column C. 

Solution of the system of equations using solver for 
various values of F1 requires the creation of a macro 
or a VBA (Visual Basic for Applications[8]) program. A 
plot of S1, X1, and P1 as functions of the dilution rate is 
shown in Figure 2, and the cell and product production 
rates are plotted in Figure 3. Maximum points for the 
two production rates in the vicinity of D = 0.1 hr-1 can 
be observed in this figure. A more precise determination 
of the maximum is discussed in the next section. 
Maximization of the Production Rates by 
Solving an SMMA Problem 

The two optimization problems can be posed as the 
following minimization problems: 

min min / ( )
F F

DX and DP where D F V
1 1

1 1 1 1
6− − =

(The minus signs in front 
of DX1 and DP1 are used 
to convert the maximiza-
tion problems into mini-
mization problems). 

The calculation of D, 
X1, and P1 associated with 
a particular value of F1 
involves the solution of 
a system of NLEs, while 
a minimization algorithm 
is required in order to find 
the values of F1 that satis-
fy Eq. (1). This is a single 
model (the chemostat) 
and multiple algorithms 
(one for solution of NLEs 
and one for minimization) 
problem. 
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Figure 3. Cell production rate (PR_DX1) and product production 
Rate (PR_DP1) as functions of dilution rate.
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The MATLAB library function fminbnd for 
single-value minimization can be used for 
finding the minimum of the functions in Eq. 
(1). In order to carry out the minimization, two 
new functions should be prepared. The first 
one (shown in Table 7) obtains F1 as input, 
uses the fsolve library function to solve the 
chemostat model, and returns – DX1 to the 
calling function. The second function does the 
same except that it returns the value of – DP1. 
Two calls to the library function fminbnd 
identify the highest production rate for cells 
DX1 = 0.0142 g/hr at a dilution rate of D = 
0.0986 hr-1 and the highest production rate for 
product DP1 = 0.00727 g/hr at a dilution rate 
of D = 0.0979 hr-1. 

Conclusions 
The example presented here provides an 

opportunity to practice several aspects of 
modeling and computation: 

• 	 Modeling of a bio-reactor and imperfect 
mixing. 

• 	 Categorizing problems according to the 
number of models and number of algorithms 
involved. 

• 	 Solving SMSA problems with a software 
package. 

• 	 Using Excel (VBA) or MATLAB program-
ming for parametric runs of SMSA problems. 

• 	 Using MATLAB programming for solving 
SMMA problems. 

We suggest that a combination of three 
popular packages— POLYMATH, Excel, and 
MATLAB—enables the solution of problems of 
increasing complexity in the educational setting. 
The example presented is suitable for courses 
in chemical reaction engineering, biochemical 
engineering, numerical methods, and optimization. 

The POLYMATH and MATLAB programs used in this 
study are available at the site <ftp://ftp.bgu.ac.il/shacham/
chemostat/>.
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Table 6
Excel Worksheet with Numerical Results and Documentation 

for the Chemostat Problem.  

Table 7 
A Function for Calculating the Cell Production Rate 

for a Single Value of F1  

No. Equation % Comment 

1 function PR_DX=ProdRateCell(F1) %Cell production rate (g/hr) 

2 V1 = 1.7; %Volume V1 (dm^3) 

3 V2 = 0.3; %Volume V2 (dm^3) 

4 xguess = [0 0 0.025 0.025]; %initial guess vector 

5 options = optimset(‘Diagnostics’,[‘off’],’TolFun’,[1e-9],’TolX’,[1e-9]); 

6 xsolv=fsolve(@MNLEfun,xguess,options,F1); 

7 X1=xsolv(3); %Cell concentration in volume V1 (g/dm^3) 

8 D = F1 / (V1 + V2); %Dilution rate (1/hr) 

9 PR_DX = -D* X1; %Cell production rate (g/hr) 




